Chapter 6 Review Problems

Use the *navigation buttons* at the bottom of the pages to get hints, check your answers, move to the next problem, or go back to previous pages.

Get the entire General, Organic, and Biochemistry Course as a Series of Video Lectures at: www.collegechem.com

© 2019 Jim Zoval

6.1) A chemical reaction is a process in which chemical bond(s) are broken and/or new bonds are made, such that one or more new are formed.

a) elements

b) phases

c) substances

d) crystalline solids

e) friendships

6.1) A chemical reaction is a process in which chemical bond(s) are broken and/or new bonds are made, such that one or more new are formed.

a) elements

b) phases

c) substances

d) crystalline solids

e) friendships

6.1) A chemical reaction is a process in which chemical bond(s) are broken and/or new bonds are made, such that one or more new are formed.

a) elements

b) phases

c) substances

d) crystalline solids

e) friendships

EXPLANATION: Whenever a **new substance** has formed, a chemical reaction has occurred.

6.2) Antoine Lavoisier and his wife, Marie-Anne Pierette Paulze, and Mikhail Lomonosov are credited for proposing and verifying the **law of conservation of mass**. This law states that matter is neither created nor destroyed in a chemical reaction, only the chemical bonding changes.

Antoine Lavoisier (1743-1794) and Marie-Anne Pierette Paulze (1758-1836)

The *law of conservation of mass* requires that the same number of of each element appear on *both sides* of the chemical equation; when this is applied to a chemical equation, we say that the equation is "*balanced*."

a) molecules

b) atoms

c) reactants

d) products

In order to balance chemical equations, we

- a) change the subscripts in the formulas of compounds
- b) add product molecules
- c) use stoichiometric coefficients
- d) remove reactants or products from the chemical equation

6.2) Antoine Lavoisier and his wife, Marie-Anne Pierette Paulze, and Mikhail Lomonosov are credited for proposing and verifying the **law of conservation of mass**. This law states that matter is neither created nor destroyed in a chemical reaction, only the chemical bonding changes.

Antoine Lavoisier (1743-1794) and Marie-Anne Pierette Paulze (1758-1836)

[Go back](#page-4-1)

The *law of conservation of mass* requires that the same number of of each element appear on *both sides* of the chemical equation; when this is applied to a chemical equation, we say that the equation is "*balanced*."

In order to balance chemical equations, we

- a) change the subscripts in the formulas of compounds
- b) add product molecules

HINT:

- c) use stoichiometric coefficients
- d) remove reactants or products from the chemical equation

6.2) Antoine Lavoisier and his wife, Marie-Anne Pierette Paulze, and Mikhail Lomonosov are credited for proposing and verifying the **law of conservation of mass**. This law states that matter is neither created nor destroyed in a chemical reaction, only the chemical bonding changes.

Antoine Lavoisier (1743-1794) and Marie-Anne Pierette Paulze (1758-1836) The *law of conservation of mass* requires that the same number of of each element appear on *both sides* of the chemical equation; when this is applied to a chemical equation, we say that the equation is "*balanced*."

In order to balance chemical equations, we

a) change the subscripts in the formulas of compounds

b) add product molecules

c) use stoichiometric coefficients

d) remove reactants or products from the chemical equation

[Go to next question](#page-7-1)

EXPLANATION: The **coefficients** indicate the **multiples** of each reactant and each product needed in order to have a *balanced equation*.

6.3) Answer the following questions about the chemical equation shown below:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

- a) What are the reactants?
- b) What is the product?
- c) What is the number "2" in front of the H_2 called?
- d) Is the equation balanced?
- e) Why is there not a coefficient for N_2 ?
- f) How many nitrogen **atoms** are needed to produce **two** NH3 molecules?
- g) How many hydrogen **atoms** are needed to produce **two** NH3 molecules?
- h) How many hydrogen **molecules** are needed to produce **two** NH₃ molecules?
- i) How many nitrogen **molecules** are needed to produce **two** NH₃ molecules?

6.3) Answer the following questions about the chemical equation shown below:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

HINTS:

- a) What are the reactants? Reactants are written on the *left hand* side of the arrow in chemical equations.
- b) What is the product? Products are written on the *right hand* side of the arrow in chemical equations.
- c) What is the number "2" in front of the H_2 called?
- d) Is the equation balanced? Are there the same number of nitrogen and hydrogen atoms on *both sides* of the equation?
- e) Why is there not a coefficient for N_2 ? What is written if a coefficient is 1?
- f) How many nitrogen **atoms** are needed to produce **two** NH3 molecules? **Each** NH3 molecule contains one **nitrogen atom**.
- g) How many hydrogen **atoms** are needed to produce **two** NH3 molecules?
- h) How many hydrogen **molecules** are needed to produce **two** NH₃ molecules?
- i) How many nitrogen **molecules** are needed to produce **two** NH₃ molecules?

6.3) Answer the following questions about the chemical equation shown below:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

- a) What are the reactants? N₂ and H₂ Reactants are written on the *left hand* side of the arrow in chemical equations.
- b) What is the product? NH₃ Products are written on the *right hand* side of the arrow in chemical equations.
- c) What is the number "2" in front of the H_2 called? a coefficient The **coefficients** indicate the **multiples** of each reactant and each product needed in order to have a *balanced equation*.
- d) Is the equation balanced? yes The same number of nitrogen and hydrogen atoms appear on *both sides* of the equation.
- e) Why is there not a coefficient for N_2 ? When the coefficient is 1, it is omitted.
- f) How many nitrogen **atoms** are needed to produce **two** NH3 molecules? **two** Each NH₃ molecule contains one **nitrogen atom**, so two NH₃ molecules contain **two** nitrogen atoms.
- g) How many hydrogen **atoms** are needed to produce **two** NH3 molecules? **six Each** NH3 molecule contains three **hydrogen atoms**, so two NH3 molecules contain **six** hydrogen atoms.
- h) How many hydrogen **molecules** are needed to produce **two** NH3 molecules? **three** The coefficients indicate that **three** hydrogen *molecules* are needed to produce two NH3 *molecules*.
- i) How many nitrogen **molecules** are needed to produce **two** NH₃ molecules? **one** The *implied* coefficient of "**1**" indicates that **one** nitrogen *molecule* is needed to produce two NH3 *molecules*.

6.4) Balance the following chemical equations. You **do not** need to include the *states* of the reactants or products.

a) $Cu(NO₃)₂ + NaBr \rightarrow CuBr₂ + NaNO₃$ **Reminder:** When a *polyatomic ion*, such as $NO₃$ ⁻, appears on *both sides* of an equation, it may be counted as if it was one "element."

b)
$$
FeCl_3 + Na_2CO_3 \rightarrow Fe_2(CO_3)_3 + NaCl
$$

c) $K + H_2O \rightarrow KOH + H_2$

d) $\text{Al}_2(\text{CO}_3)_3 + \text{Mgl}_2 \rightarrow \text{Al}_3 + \text{MgCO}_3$

e)
$$
SnS_2 + O_2 \rightarrow SnO_2 + SO_2
$$

f) Ba + $O_2 \rightarrow$ BaO

6.4) Balance the following chemical equations. You **do not** need to include the *states* of the reactants or products.

6.4) Balance the following chemical equations. You **do not** need to include the *states* of the reactants or products.

For more details, see [chapter 6 part 2 video](https://vimeo.com/61937289) or chapter 6 section 3 in the textbook. If you are still struggling with balancing after that, *see you instructor for one-on-one help*.

6.5) Write *balanced chemical equations* for each of the following *equation descriptions*. You **do not** need to include the *states* of the reactants or products.

a) Aluminum metal *reacts with* copper(II) bromide *to produce* aluminum bromide and copper metal.

b) Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

c) Barium metal reacts with oxygen gas to produce barium oxide (Recall that oxygen is one of the diatomic molecules that are referred to by their element's name).

d) Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.

- 6.5) Write *balanced chemical equations* for each of the following *equation descriptions*. You **do not** need to include the *states* of the reactants or products.
	- **HINT:** Before attempting to balance the equations, you must first convert the *compound names* into the correct *chemical formulas*. If you begin to struggle with that, you may wish to go back to chapter 3 and re-work the naming problems.

a) Aluminum metal *reacts with* copper(II) bromide *to produce* aluminum bromide and copper metal.

b) Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

c) Barium metal reacts with oxygen gas to produce barium oxide (Recall that oxygen is one of the diatomic molecules that are referred to by their element's name).

d) Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.

For more help, see [chapter 6 part 2 video](https://vimeo.com/61937289) or chapter 6 section 3 in the textbook. If you are still struggling with balancing after that, *see you instructor for one-on-one help*.

6.5) Write *balanced chemical equations* for each of the following *equation descriptions*. You **do not** need to include the *states* of the reactants or products.

EXPLANATION: You must first convert the *compound names* into the correct *chemical formulas*. If you struggled with that, you may wish to go back to chapter 3 and re-work the naming problems.

a) Aluminum metal *reacts with* copper(II) bromide *to produce* aluminum bromide and copper metal.

 $2 \text{ Al } + 3 \text{ CuBr } \rightarrow 2 \text{ AlBr } + 3 \text{ Cu}$

b) Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

 $Pb(NO₃)₂ + 2NaBr \rightarrow PbBr₂ + 2NaNO₃$

c) Barium metal reacts with oxygen gas to produce barium oxide (Recall that oxygen is one of the diatomic molecules that are referred to by their element's name).

 $2 \text{ Ba} + \text{O}_2 \rightarrow 2 \text{ BaO}$

d) Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.

 $\text{Al}_2(\text{SO}_4)_3 + 3 \text{ Bal}_2 \rightarrow 2 \text{ Al}_3 + 3 \text{ BaSO}_4$

For more details on balancing equations, see [chapter 6 part 2 video](https://vimeo.com/61937289) or chapter 6 section 3 in the textbook. If you are still struggling with balancing after that, *see you instructor for one-on-one help*.

6.6) For the combustion of methane reaction, how many moles of H_2O can be produced from 1.30 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 .

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

6.6) For the combustion of methane reaction, how many moles of H_2O can be produced from 1.30 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 .

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

HINT: We approach stoichiometry problems *just as we did with unit conversion problems using our factor-label method.*

- In this problem, we are converting from units of "moles of CH_4 " to units of "moles of H_2O ."
- The stoichiometric coefficients provide the relationship between "**moles of CH₄**" and "**moles of H₂O.**"
	- For every 1 mole of CH₄ that reacts, 2 moles of H₂O are produced. This relationship is used as a *conversion factor*.

6.6) For the combustion of methane reaction, how many moles of H_2O can be produced from 1.30 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 . **ANSWER: 2.60 moles** (three significant figures)

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

[Go to next question](#page-20-1)

[CLICK HERE to see the](#page-19-1) **complete solution** [for this problem](#page-19-1)

6.6) For the combustion of methane reaction, how many moles of H_2O can be produced from 1.30 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 . **ANSWER: 2.60 moles** (three significant figures)

$$
1\!\text{CH}_4(g) + 2\,\text{O}_2(g) \to 1\,\text{CO}_2(g) + 2\,\text{H}_2\text{O}(g)
$$

EXPLANATION: We approach stoichiometry problems *just as we did with unit conversion problems using our factorlabel method.*

- In this problem, we are converting from units of "moles of CH_4 " to units of "moles of H_2O ."
- The stoichiometric coefficients provide the relationship between "**moles of CH₄**" and "**moles of H₂O.**"
	- For every 1 mole of CH₄ that reacts, 2 moles of H₂O are produced. This relationship is used as a *conversion factor*.

6.7) For the combustion of methane reaction, how many **moles of** O_2 are needed to react with 7.80 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 .

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

6.7) For the combustion of methane reaction, how many **moles of** O_2 are needed to react with 7.80 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 .

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

HINT: We approach stoichiometry problems *just as we did with unit conversion problems using our factor-label method.*

- In this problem, we are converting from units of "moles of CH_4 " to units of "moles of O_2 ."
- The stoichiometric coefficients provide the relationship between "**moles of CH₄**" and "**moles of O**₂."
	- For every 1 mole of CH₄ that reacts, how many moles of O_2 are needed? Use this relationship as a *conversion factor*.

Assume you have an unlimited supply of O₂. ANSWER: 15.6 moles (three significant figures) 6.7) For the combustion of methane reaction, how many **moles of** O_2 are needed to react with 7.80 moles of methane (CH₄)?

$$
CH_4(g) + 2 O_2(g) \to CO_2(g) + 2 H_2O(g)
$$

[Go to next question](#page-24-1)

[CLICK HERE to see the](#page-23-1) **complete solution** [for this problem](#page-23-1)

6.7) For the combustion of methane reaction, how many **moles of** O_2 are needed to react with 7.80 moles of methane (CH₄)? Assume you have an unlimited supply of O_2 . **ANSWER: 15.6 moles** (three significant figures)

$$
1CH4(g) + 2O2(g) \rightarrow 1 CO2(g) + 2 H2O(g)
$$

EXPLANATION: We approach stoichiometry problems *just as we did with unit conversion problems using our factorlabel method.*

- In this problem, we are converting from units of "moles of CH_4 " to units of "moles of O_2 ."
- The stoichiometric coefficients provide the relationship between "moles of CH₄" and "moles of O₂."
	- For every 1 mole of CH₄ that reacts, 2 moles of O_2 are needed. This relationship is used as a *conversion factor*.

7.80 moles CH₄
$$
\begin{array}{|c|c|}\n\hline\n2 \text{ moles O}_2 \\
\hline\n\end{array}\n\bigg| = 15.6 \text{ moles O}_2
$$

6.8) Balance the chemical equation for the combustion of *pentane*: $C_5H_{12}(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

6.8) Balance the chemical equation for the combustion of *pentane*: $C_5H_{12}(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

HINT:

There are *three steps* involved in the *systematic balancing method*:

Step 1: Make a table that lists the elements that are present and count all atoms on each side of the *unbalanced* equation.

- If H_2 or O_2 is present, list these elements last.
- A polyatomic ion may be counted as one "element" *if it appears on* **both** *sides of the equation.*
- **Step 2:** Balance an element in the table by adding *coefficient(s)* to the equation (start with the first element on the list).
- **Step 3:** Recount each atom and update the table, then repeat **Steps 2 and 3** for all elements as needed until the equation is balanced.

For more details, see [chapter 6 part 2 video](https://vimeo.com/61937289) or chapter 6 section 3 in the textbook.

6.8) Balance the chemical equation for the combustion of *pentane*: $C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$

EXPLANATION:

There are *three steps* involved in the *systematic balancing method*:

Step 1: Make a table that lists the elements that are present and count all atoms on each side of the *unbalanced* equation.

- If H_2 or O_2 is present, list these elements last.
- A polyatomic ion may be counted as one "element" *if it appears on* **both** *sides of the equation.*
- **Step 2:** Balance an element in the table by adding *coefficient(s)* to the equation (start with the first element on the list).
- **Step 3:** Recount each atom and update the table, then repeat **Steps 2 and 3** for all elements as needed until the equation is balanced.

ANSWER

For more details, see [chapter 6 part 2 video](https://vimeo.com/61937289) or chapter 6 section 3 in the textbook. If you are still struggling with balancing after that, *see you instructor for one-on-one help*.

6.9) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$

How many grams of H_2O can be produced from 15.0 grams of propane (C_5H_{12}) ?

• Assume you have an unlimited supply of O_2 .

6.9) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$

How many grams of H_2O can be produced from 15.0 grams of propane (C_5H_{12}) ?

• Assume you have an unlimited supply of O_2 .

6.9) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$ **ANSWER: 22.5 grams H₂O**

How many grams of H_2O can be produced from 15.0 grams of propane (C_5H_{12}) ?

• Assume you have an unlimited supply of O_2 .

[CLICK HERE to see the](#page-30-1) **complete solution** [for this problem](#page-30-1)

6.9) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$ **ANSWER: 22.5 grams H₂O**

How many grams of H_2O can be produced from 15.0 grams of propane (C_5H_{12}) ?

• Assume you have an unlimited supply of O_2 .

[Go back](#page-29-1)

Alternative Solution: Combine all three of the conversions above into one equation:

6.10) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$ How many **grams** of O_2 are *needed to react* with 12.0 **grams** of propane (C_5H_{12}) ?

6.10) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$

How many **grams** of O_2 are *needed to react* with 12.0 **grams** of propane (C_5H_{12}) ?

6.10) For the combustion of *pentane*: $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$ **ANSWER: 42.6 grams O₂** How many **grams** of O_2 are *needed to react* with 12.0 **grams** of propane (C_5H_{12}) ?

> [CLICK HERE to see the](#page-34-1) **complete solution** [for this problem](#page-34-1)

6.10) For the combustion of *pentane*: $C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$ **ANSWER: 42.6 grams O₂**

How many **grams** of \mathbf{O}_2 are *needed to react* with 12.0 **grams** of propane (C_5H_{12}) ?

Alternative Solution: Combine all three of the conversions above into one equation:

[Go back](#page-33-1)

6.11) For the reaction of aluminum metal *with* copper(II) bromide: $2 \text{ Al } + 3 \text{ CuBr}_2 \rightarrow 2 \text{ AlBr}_3 + 3 \text{ Cu}$ How many grams of AlBr_3 can be produced from 12.0 grams of CuBr_2 ?

• Assume you have an unlimited supply of aluminum metal (Al).

6.11) For the reaction of aluminum metal *with* copper(II) bromide: $2 \text{ Al } + 3 \text{ CuBr}_2 \rightarrow 2 \text{ AlBr}_3 + 3 \text{ Cu}$

How many grams of AlBr₃ can be produced from 12.0 grams of $CuBr₂$?

• Assume you have an unlimited supply of aluminum metal (Al).

[Go to next question](#page-39-1)

6.11) For the reaction of aluminum metal *with* copper(II) bromide: $2 \text{ Al } + 3 \text{ CuBr}_2 \rightarrow 2 \text{ AlBr}_3 + 3 \text{ Cu}$

How many grams of AlBr₃ can be produced from 12.0 grams of $CuBr₂$?

• Assume you have an unlimited supply of aluminum metal (Al).

[CLICK HERE to see the](#page-38-1) **complete solution** [for this problem](#page-38-1)

ANSWER: 9.55 grams AlBr3

- 6.11) For the reaction of aluminum metal *with* copper(II) bromide: $2 \text{ Al } + 3 \text{ CuBr}_2 \rightarrow 2 \text{ AlBr}_3 + 3 \text{ Cu}$ How many grams of AlBr₃ can be produced from 12.0 grams of $CuBr₂$?
	- Assume you have an unlimited supply of aluminum metal (Al).

ANSWER: 9.55 grams AlBr3

Alternative Solution: Combine all three of the conversions above into one equation:

[Go back](#page-37-1)

6.12) We call reactions that release energy, in the form of heat, ______________ reactions.

a) double replacement

b) single replacement

c) synthesis

d) exothermic

6.12) We call reactions that release energy, in the form of heat, _______________ reactions.

6.12) We call reactions that release energy, in the form of heat, reactions.

[Go to next question](#page-42-1)

- a) double replacement
- b) single replacement
- c) synthesis
- d) exothermic

EXPLANATION:

All chemical reactions involve changes in energy. Some reactions *release energy* as heat, light, electricity, and/or mechanical energy (work). The energy that is released in a chemical reaction comes from *potential energy* contained in the *reactant(s)*. Examples of reactions that produce heat and light are combustion reactions (burning).

6.13) When a chemical reaction can continue to occur without an external input of energy, we say the reaction is

- a) spontaneous
- b) nonspontaneous
- c) dangerous
- d) efficient

6.13) When a chemical reaction can continue to occur without an external input of energy, we say the reaction is

6.13) When a chemical reaction can continue to occur without an external input of energy, we say the reaction is

a) spontaneous

- b) nonspontaneous
- c) dangerous
- d) efficient

EXPLANATION:

Consider concept of **spontaneity** by examining a reaction that that you are likely are familiar with the combustion of propane gas. Propane gas is used throughout the world as a source of heat in gas ranges, ovens, climate control, outdoor cooking, and hot water tanks. During combustion, propane reacts with oxygen gas to produce carbon dioxide gas and H_2O vapor.

 $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$

Many of us have used propane gas in outdoor lanterns and barbecues. We know that once we use a spark or match to start the reaction, that the combustion reaction *continues to occur without an external input of energy*. It is therefore a **spontaneous** reaction.

6.14) Chemical reactions will occur spontaneously when the free energy (G) of the product(s) is ___________ the free energy of the reactant(s).

a) greater than

b) less than

c) equal to

6.14) Chemical reactions will occur spontaneously when the free energy (G) of the product(s) is ____________ the free energy of the reactant(s).

6.14) Chemical reactions will occur spontaneously when the free energy (G) of the product(s) is __________ the free energy of the reactant(s).

a) greater than b) less than c) equal to

EXPLANATION:

The law of nature that applies to total energy (E), also applies to free energy (G); matter tends to exist in the lowest possible free energy state, therefore chemical reactions will occur spontaneously when the total free energy of the products is less than the total free energy of the reactants.

6.15) When the free energy (G) of the products of a reaction is less than the free energy of the reactants, we say that the reaction is ________________.

a) endogonic

b) exergonic

c) safe

d) potentially dangerous

6.15) When the free energy (G) of the products of a reaction is less than the free energy of the reactants, we say that the reaction is ________________.

6.15) When the free energy (G) of the products of a reaction is less than the free energy of the reactants, we say that the reaction is ________________.

EXPLANATION:

"Exergonic" is an important term to know and understand. You will likely see it again if you take a physiology course.

6.16) Which of the following statements is **true** for *spontaneous reactions*:

- a) The sign of ΔG is positive.
- b) The sign of ΔG is negative.

6.16) Which of the following statements is **true** for *spontaneous reactions*:

- a) The sign of ΔG is positive.
- b) The sign of ΔG is negative.

HINT:

The change in free energy (ΔG) for reaction is equal to the difference in free energy between the products ($G_{products}$) and the reactants ($G_{reactants}$):

 $\Delta G = (G_{\text{products}}) - (G_{\text{reactants}})$

In **spontaneous reactions**, the free energy of the products (G_{products}) of a reaction is less than the free energy of the reactants ($G_{\text{reactants}}$). When this is the case, will the change in free energy (ΔG) have a **positive** or **negative** value? Answer this question by examining the equation shown above.

6.16) Which of the following statements is **true** for *spontaneous reactions*:

EXPLANATION:

The change in free energy (ΔG) for reaction is equal to the difference in free energy between the products ($G_{products}$) and the reactants ($G_{reactants}$):

 $\Delta G = (G_{\text{products}}) - (G_{\text{reactants}})$

Note the use of our convention of defining change (Δ) as the final state (products only) minus the initial state (reactants only).

In **spontaneous reactions**, the free energy of the products (G_{products}) of a reaction is less than the free energy of the reactants (Greactants), therefore the change in free energy (ΔG) will have a **negative value**. You should be able to convince yourself of this by examining the equation shown above.

6.17) Determine whether the following reactions are *spontaneous* or *non-spontaneous*.

a) N₂ (g) + 3 H₂ (g) \rightarrow 2 NH₃ (g), $\Delta G = -32,960$ J

b) $2 NH_3(g) \rightarrow N_2(g) + 3 H_2(g)$, $\Delta G = 32,960 J$

6.17) Determine whether the following reactions are *spontaneous* or *non-spontaneous*.

a) N₂ (g) + 3 H₂ (g) \rightarrow 2 NH₃ (g), $\Delta G = -32,960$ J

b) $2 \text{ NH}_3(g) \rightarrow \text{N}_2(g) + 3 \text{ H}_2(g)$, $\Delta G = 32,960 \text{ J}$

HINT:

The change in free energy (ΔG) for reaction is equal to the difference in free energy between the products ($G_{products}$) and the reactants ($G_{reactants}$):

$$
\Delta G = (G_{\text{products}}) \text{ - } (G_{\text{reactants}})
$$

In **spontaneous reactions**, the free energy of the products (G_{products}) of a reaction is less than the free energy of the reactants ($G_{\text{reactants}}$). When this is the case, will the change in free energy (ΔG) will have a **negative value** or a **positive value**?

[Go to next question](#page-57-1)

6.17) Determine whether the following reactions are *spontaneous* or *non-spontaneous*.

a)
$$
N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)
$$
, $\Delta G = -32,960 J$ spontaneous $(\Delta G < 0)$
b) $2 NH_3(g) \rightarrow N_2(g) + 3 H_2(g)$, $\Delta G = 32,960 J$ non-spontaneous $(\Delta G > 0)$

EXPLANATION:

The change in free energy (ΔG) for reaction is equal to the difference in free energy between the products $(G_{products})$ and the reactants $(G_{reactants})$:

$$
\Delta G = (G_{\text{products}}) \text{ - } (G_{\text{reactants}})
$$

In *spontaneous reactions*, the free energy of the products (G_{products}) of a reaction is less than the free energy of the reactants (Greactants), therefore the change in free energy (ΔG) will have a **negative value**. Conversely, in *non-spontaneous reactions*, the change in free energy (ΔG) will have a **positive value**.

6.18) In the reaction energy level diagram shown here:

- a) Does the orange box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?
- b) Does the red box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?
- c) What does the yellow star represent?

6.18) In the reaction energy level diagram shown here:

HINT:

- a) Does the orange box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?
- b) Does the red box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?
- c) What does the yellow star represent?

6.18) In the reaction energy level diagram shown here:

a) Does the orange box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?

In the transition state, the bonds in the reactants have not all

been completely broken and/or the new bonds in the products

- b) Does the red box represent the *change in free energy* (**ΔG**), the *activation energy* (**Ea**), or the *transition state energy*?
- c) What does the **yellow star** represent? *the transition state*

6.19) The amount of free energy needed to progress from reactants to the transition state is called the activation energy (E_a) . The rates of chemical reactions (how quickly the reactions happen) depend on the activation energy. The lower the activation energy, the the reaction rate.

a) slower

b) faster

c) more variable

d) less variable

6.19) The amount of free energy needed to progress from reactants to the transition state is called the activation energy (E_a) . The rates of chemical reactions (how quickly the reactions happen) depend on the activation energy. The lower the activation energy, the _______________ the reaction rate.

6.19) The amount of free energy needed to progress from reactants to the transition state is called the activation energy (E_a) . The rates of chemical reactions (how quickly the reactions happen) depend on the activation energy. The lower the activation energy, the _____________ the reaction rate.

[Go to next question](#page-63-1)

6.20) Label each of the following statements as **true** or **false**.

- a) Reaction rates depend on the temperature.
- b) As the temperature increases, the reaction rate decreases.
- c) In general, for every 10 \textdegree C increase in temperature, the reaction rate increases by a factor of 10.
- d) In general, for every 10 \textdegree C decrease in temperature, the reaction rate decreases by a factor of one-half.
- e) Catalysts are reactants in a chemical reaction.
- f) Living organisms produce catalysts consisting of large molecules, usually proteins, that are called enzymes.

6.20) Label each of the following statements as **true** or **false**.

- a) Reaction rates depend on the temperature.
- b) As the temperature increases, the reaction rate decreases.
- c) In general, for every 10 \textdegree C increase in temperature, the reaction rate increases by a factor of 10.
- d) In general, for every 10 \degree C decrease in temperature, the reaction rate decreases by a factor of one-half.
- e) Catalysts are reactants in a chemical reaction. **HINT**: Are catalysts *changed* in a reaction? Reactants are *always* changed into products in reactions.
- f) Living organisms produce catalysts consisting of large molecules, usually proteins, that are called enzymes.

For more help: Review [chapter 6 part 6 video](https://vimeo.com/62227047) or chapter 6 section 5 in the textbook.

6.20) Label each of the following statements as **true** or **false**.

- a) Reaction rates depend on the temperature. **true**
- b) As the temperature increases, the reaction rate decreases. **false**
	- As the temperature increases, the reaction rate *increases*.
- c) In general, for every 10 °C increase in temperature, the reaction rate increases by a factor of 10. **false**
	- In general, for every 10 °C increase in temperature, the reaction rate *doubles*.
- d) In general, for every 10 °C decrease in temperature, the reaction rate decreases by a factor of one-half. true
- e) Catalysts are reactants in a chemical reaction. **false**
	- Unlike reactants, catalysts are *not changed* in a reaction.
- f) Living organisms produce catalysts consisting of large molecules, usually proteins, that are called enzymes. **true**

For more details:

See [chapter 6 part 6 video](https://vimeo.com/62227047) or chapter 6 section 5 in the textbook.

6.21) Two curves, one drawn as solid purple and the other drawn as dashed purple, are shown in the energy level diagram below. One curve is for a *catalyzed* reaction and the other is for the same *un-catalyzed* reaction.

Which double arrow, the **orange double arrow** or the red double arrow, represents the *activation energy* (E_a) for the *catalyzed* reaction.

6.21) Two curves, one drawn as solid purple and the other drawn as dashed purple, are shown in the energy level diagram below. One curve is for a *catalyzed* reaction and the other is for the same *un-catalyzed* reaction.

Which double arrow, the **orange double arrow** or the red double arrow, represents the *activation energy* (E_a) for the *catalyzed* reaction.

HINT: Catalysts increase the rates of reactions by **decreasing** the *activation energy* **(Ea)**.

[Go to next question](#page-69-1)

Progress of the Reaction

6.21) Two curves, one drawn as solid purple and the other drawn as dashed purple, are shown in the energy level diagram below. One curve is for a *catalyzed* reaction and the other is for the same *un-catalyzed* reaction.

Which double arrow, the **orange double arrow** or the red double arrow, represents the *activation energy* (E_a) for the *catalyzed* reaction.

EXPLANATION:

Catalysts increase the rates of reactions by **decreasing** the *activation energy* **(Ea)**. In the energy level diagram shown here, the solid purple curve represents the un-catalyzed reaction and a dashed purple curve is used for the catalyzed reaction. In the *catalyzed reaction*, the reactants require less energy to overcome the activation energy and are therefore converted to products at a faster rate. You will learn more details of how catalysts lower the activation energy in chapter 13.

For more details:

See [chapter 6 part 6 video](https://vimeo.com/62227047) or chapter 6 section 5 in the textbook.

6.22) Categorize each of the following reactions as either: synthesis, decomposition, single-replacement, or double-replacement.

a) $2 \text{ H}_2\text{S} \rightarrow 2 \text{ H}_2 + \text{S}_2$

b) KCl + $AgNO₃$ \rightarrow KNO₃ + AgCl

c) $2 \text{ Ba} + \text{O}_2 \rightarrow 2 \text{ BaO}$

d) $Zn + CuCl₂ \rightarrow ZnCl₂ + Cu$

6.22) Categorize each of the following reactions as either: synthesis, decomposition, single-replacement, or double-replacement.

a) $2 \text{ H}_2\text{S} \rightarrow 2 \text{ H}_2 + \text{S}_2$ b) KCl + $AgNO₃ \rightarrow KNO₃ + AgCl$ c) $2 \text{ Ba} + \text{O}_2 \rightarrow 2 \text{ BaO}$ d) $Zn + CuCl_2 \rightarrow ZnCl_2 + Cu$

[Go back](#page-69-1)

HINT: A *synthesis reaction* is one in which a single compound is formed from two or more substances. The general form of a synthesis reaction is:

 $A + B \rightarrow AB$

A *decomposition reaction* is a reaction in which a single reactant breaks down into two or more substances. The general form of a decomposition reaction is:

 $AB \rightarrow A + B$

In a *single-replacement reaction*, an element *replaces* another element from a compound. The general form of a single-replacement reaction, where **A** replaces **B**, is:

 $A + BX \rightarrow AX + B$

In a *double-replacement reaction*, two substances "*switch partners*." The general form of a double replacement reaction, where **AX** and **BY** *switch partners*, is:

 $AX + BY \rightarrow AY + BX$

6.22) Categorize each of the following reactions as either: synthesis, decomposition, single-replacement, or double-replacement.

[Go to next question](#page-72-1)

- 6.23) The term "**redox**" is an abbreviated combination (portmanteau) of the words "**reduction**" and "**oxidation**." In a redox chemical reaction, an oxidation and a reduction occur simultaneously. Many of the reactions that you have seen in chapter 6 are redox reactions. The series of chemical reactions in which we metabolize food and the series of chemical reactions called photosynthesis both contain many redox reactions.
	- i) Oxidation is the of electron(s) by an atom, ion, or molecule.
		- a) gain
		- b) loss
	- ii) Reduction is the $\qquad \qquad$ of electron(s) by an atom, ion, or molecule.

a) gain

- b) loss
- iii) An atom in a covalent compound is _____________ if it *gains bond(s)* to *oxygen* and/or *loses bond(s)* to *hydrogen*. a) transferred
	- b) reduced
	- c) oxidized
- iv) An atom in a covalent compound is \qquad if it *loses bond(s)* to *oxygen* and/or *gains bond(s)* to *hydrogen.*
	- a) transferred
	- b) reduced

c) oxidized

- 6.23) The term "**redox**" is an abbreviated combination (portmanteau) of the words "**reduction**" and "**oxidation**." In a redox chemical reaction, an oxidation and a reduction occur simultaneously. Many of the reactions that you have seen in chapter 6 are redox reactions. The series of chemical reactions in which we metabolize food and the series of chemical reactions called photosynthesis both contain many redox reactions.
	- **HINT**: A useful mnemonic to differentiate **oxidation** and **reduction** is the term "**O**I**LR**I**G**" (**O**xidation **i**s the **L**oss of electrons; **R**eduction **i**s the **G**ain of electrons). i) Oxidation is the of electron(s) by an atom, ion, or molecule. ii) Reduction is the of electron(s) by an atom, ion, or molecule. a) gain b) loss a) gain b) loss

iii) An atom in a covalent compound is **if it** *gains bond(s)* to *oxygen* and/or *loses bond(s)* to *hydrogen*.

a) transferred

b) reduced

c) oxidized

HINT: For *covalent compounds*, such as organic and biological compounds, the gaining and losing of electrons is the result of a **gain** or **loss** of bond(s) to *oxygen atoms* or *hydrogen atoms*.

- iv) An atom in a covalent compound is \qquad if it *loses bond(s)* to *oxygen* and/or *gains bond(s)* to *hydrogen.*
	- a) transferred
	- b) reduced
	- c) oxidized

[Go back](#page-72-1)

- 6.23) The term "**redox**" is an abbreviated combination (portmanteau) of the words "**reduction**" and "**oxidation**." In a redox chemical reaction, an oxidation and a reduction occur simultaneously. Many of the reactions that you have seen in chapter 6 are redox reactions. The series of chemical reactions in which we metabolize food and the series of chemical reactions called photosynthesis both contain many redox reactions.
	- i) Oxidation is the of electron(s) by an atom, ion, or molecule. a) gain b) loss
	- ii) Reduction is the $\qquad \qquad$ of electron(s) by an atom, ion, or molecule. a) gain

b) loss

In a *redox* chemical reaction, an *oxidation* and a *reduction* occur simultaneously. Electrons are *transferred* from one atom, ion, or molecule *to another* atom, ion, or molecule. The electron(s) that are "lost" by the *oxidized species* are "gained" by the *reduced species*.

iii) An atom in a covalent compound is \qquad if it *gains bond(s)* to *oxygen* and/or *loses bond(s)* to *hydrogen*.

a) transferred

b) reduced

c) oxidized

For *covalent compounds*, such as organic and biological compounds, the gaining and losing of electrons is the result of a **gain** or **loss** of bond(s) to *oxygen atoms* or *hydrogen atoms*.

iv) An atom in a covalent compound is \qquad if it *loses bond(s)* to *oxygen* and/or *gains bond(s)* to *hydrogen.* a) transferred

c) oxidized

6.24) Answer the questions below for the reaction of lithium with oxygen:

 $4 \text{Li}(s) + \text{O}_2(g) \rightarrow 2 \text{Li}_2\text{O}(s)$

- a) What is the charge of the **lithium atoms** in the reactant Li(s)
- b) What is the charge of the **lithium ion** in the product?
- c) Did **lithium** gain or lose electron(s) in this reaction? If so, how many?
- d) Was **lithium** oxidized or reduced?
- e) What is the charge of the **oxygen atoms** in the reactant $O_2(g)$?
- f) What is the charge of the **oxide ions** in the product?
- g) Did **oxygen** gain or lose electron(s) in this reaction? If so, how many?
- h) Was **oxygen** oxidized or reduced?

6.24) Answer the questions below for the reaction of lithium with oxygen:

 $4 \text{Li}(s) + \text{O}_2(g) \rightarrow 2 \text{Li}_2\text{O}(s)$

- a) What is the charge of the **lithium atoms** in the reactant Li(s) (all elements and compounds are uncharged)
- b) What is the charge of the **lithium ion** in the product? (Li₂O is uncharged, however lithium is an ion in this compound)
- c) Did **lithium** gain or lose electron(s) in this reaction? If so, how many?
- d) Was **lithium** oxidized or reduced?
- e) What is the charge of the **oxygen atoms** in the reactant $O_2(g)$?
- f) What is the charge of the **oxide ions** in the product?
- g) Did **oxygen** gain or lose electron(s) in this reaction? If so, how many?
- h) Was **oxygen** oxidized or reduced?

HINT: It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are *transferred from one species to another*.

- If the **charge** of an atom or ion in a reactant was *increased* (toward positive) in the conversion of reactants to products, *an oxidation occurred*.
- If the **charge** of an atom or ion in a reactant was *decreased* (toward negative) in the conversion of reactants to products, *a reduction occurred*.

6.24) Answer the questions below for the reaction of lithium with oxygen:

 $4 \text{Li}(s) + \text{O}_2(g) \rightarrow 2 \text{Li}_2\text{O}(s)$

- a) What is the charge of the **lithium atoms** in the reactant Li(s) **0** (all elements and compounds are uncharged)
- b) What is the charge of the **lithium ion** in the product? 1^+ or just $+(Li_2O)$ is uncharged, however Li⁺ is an ion)
- c) Did lithium gain or lose electron(s) in this reaction? lost If so, how many? one
- d) Was **lithium** oxidized or reduced? **oxidized**
- e) What is the charge of the **oxygen atoms** in the reactant $O_2(g)$? **0** (all elements and compounds are uncharged)
- f) What is the charge of the **oxide ions** in the product? 2° (Li₂O is uncharged, however O^{2} is an ion)
- g) Did oxygen gain or lose electron(s) in this reaction? gain If so, how many? two

charge

 $3-$

h) Was **oxygen** oxidized or reduced? **reduced**

EXPLANATION: It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are *transferred from one species to another*.

- If the **charge** of an atom or ion in a reactant was *increased* (toward positive) in the conversion of reactants to products, *an oxidation occurred*.
- If the **charge** of an atom or ion in a reactant was *decreased* (toward negative) in the conversion of reactants to products, *a reduction occurred*. lose electrons (oxidation)

⁰

 $2+$

 $1+$

 $3+$

6.25) Answer the questions below for the reaction of copper metal with silver nitrate:

 $Cu(s) + 2AgNO₃(aq) \rightarrow CuNO₃)(aq) + 2Ag(s)$

- a) What is the charge of the **copper** in the reactant Cu(s)
- b) What is the charge of the **copper** in the product?
- c) Did **copper** gain or lose electron(s) in this reaction? If so, how many?
- d) Was **copper** oxidized or reduced?
- e) What is the charge of the **silver** in the reactant $(AgNO₃)$?
- f) What is the charge of the **silver** in the product?
- g) Did **silver** gain or lose electron(s) in this reaction? If so, how many?
- h) Was **silver** oxidized or reduced?

6.25) Answer the questions below for the reaction of copper metal with silver nitrate:

 $Cu(s) + 2AgNO₃(aq) \rightarrow CuNO₃)(aq) + 2Ag(s)$

- a) What is the charge of the **copper** in the reactant Cu(s)
- b) What is the charge of the **copper** in the product? this **must be** deduced from the formula, $Cu(NO₃)₂$
- c) Did **copper** gain or lose electron(s) in this reaction? If so, how many?
- d) Was **copper** oxidized or reduced?
- e) What is the charge of the **silver** in the reactant $(AgNO₃)$?
- f) What is the charge of the **silver** in the product?
- g) Did **silver** gain or lose electron(s) in this reaction? If so, how many?
- h) Was **silver** oxidized or reduced?

HINT: It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are *transferred from one species to another*.

- If the **charge** of an atom or ion in a reactant was *increased* (toward positive) in the conversion of reactants to products, *an oxidation occurred*.
- If the **charge** of an atom or ion in a reactant was *decreased* (toward negative) in the conversion of reactants to products, *a reduction occurred*.

6.25) Answer the questions below for the reaction of copper metal with silver nitrate:

 $Cu(s) + 2AgNO₃(aq) \rightarrow CuNO₃)(aq) + 2Ag(s)$

- a) What is the charge of the **copper** in the reactant Cu(s) **0** all elements and compounds are uncharged
- b) What is the charge of the **copper** in the product? 2^+ this **must be** deduced from the formula, Cu(NO₃)₂
- c) Did **copper** gain or lose electron(s) in this reaction? lost If so, how many? two
- d) Was **copper** oxidized or reduced? **oxidized**
- e) What is the charge of the **silver** in the reactant $(AgNO₃)$? 1^+ AgNO₃ is uncharged, however Ag⁺ is an ion
- f) What is the charge of the **silver** in the product? **0** all elements and compounds are uncharged
- g) Did silver gain or lose electron(s) in this reaction? **gain** If so, how many? one

charge

 $3-$

h) Was **silver** oxidized or reduced? **reduced**

EXPLANATION: It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are *transferred from one species to another*.

- If the **charge** of an atom or ion in a reactant was *increased* (toward positive) in the conversion of reactants to products, *an oxidation occurred*.
- If the **charge** of an atom or ion in a reactant was *decreased* (toward negative) in the conversion of reactants to products, *a reduction occurred*. lose electrons (oxidation)

 Ω

 $1+$

 $2+$

 $3+$

6.26) In the reaction shown below, is **1-pentene** being *oxidized* or *reduced* ?

$$
CH2 = CHCH2CH2CH3 + H2 \longrightarrow CH3CH2CH2CH2CH3
$$

1-pentene pentane

6.26) In the reaction shown below, is **1-pentene** being *oxidized* or *reduced* ?

[Go back](#page-81-1)

[Go to next question](#page-84-1)

6.26) In the reaction shown below, is **1-pentene** being *oxidized* or *reduced* ?

[Go to next question](#page-84-1)

6.27) One of the reactions in the citric acid cycle is the reaction of *malate* with *nicotinamide adenine dinucleotide* (NAD+) to produce *nicotinamide adenine dinucleotide hydride* (NADH) and *oxaloacetate*. The reaction is shown below. Is *malate* being *oxidized* or *reduced*?

6.27) One of the reactions in the citric acid cycle is the reaction of *malate* with *nicotinamide adenine dinucleotide* (NAD+) to produce *nicotinamide adenine dinucleotide hydride* (NADH) and *oxaloacetate*. The reaction is shown below. Is *malate* being *oxidized* or *reduced*?

HINT: For **covalent compounds** such as organic molecules:

- An atom in a covalent compound is **oxidized** if it *gains bond(s)* to *oxygen* and/or *loses bond(s)* to *hydrogen*.
- An atom in a covalent compound is **reduced** if it *loses bond(s)* to *oxygen* and/or *gains bond(s)* to *hydrogen.*

Consider the carbon in malate indicated by the red arrow*.*

6.27) One of the reactions in the citric acid cycle is the reaction of *malate* with *nicotinamide adenine dinucleotide* (NAD+) to produce *nicotinamide adenine dinucleotide hydride* (NADH) and *oxaloacetate*. The reaction is shown below.

Is *malate* being *oxidized* or *reduced*?

EXPLANATION: For **covalent compounds** such as organic molecules:

- An atom in a covalent compound is **oxidized** if it *gains bond(s)* to *oxygen* and/or *loses bond(s)* to *hydrogen*.
- An atom in a covalent compound is **reduced** if it *loses bond(s)* to *oxygen* and/or *gains bond(s)* to *hydrogen.*

[Go to next question](#page-87-1)

In this reaction, a carbon in malate (see red arrow) *lost* a *bond* to *hydrogen* (*and gained a second bond to the oxygen* that was already present), therefore *malate* was **oxidized***.*

6.28) You learned about *four classes of organic reactions* in this chapter. Match each **reaction description** (on the left) with an the appropriate **organic reaction class** (on the right).

Reaction Descriptions:

- a) In this reaction, a water molecule breaks a bond to form a carboxylic acid and an alcohol.
- b) An **H** and an **OH** are removed from the reactant to produce an alkene and H_2O .
- c) A hydrogen atom is added to each of the double bonded carbon atoms in the reactant to produce an alkane.
- d) A hydrogen atom from **H2O** is added to one of the double bonded carbon atoms and the OH from the H_2O is added to the other double bonded carbon atom in the reactant to produce the corresponding alcohol.

Organic Reaction Class Choices: Hydrogenation: Reduction of Alkenes Hydrolysis of Esters Hydration of Alkenes Dehydration of Alcohols

6.28) You learned about *four classes of organic reactions* in this chapter. Match each **reaction description** (on the left) with an the appropriate **organic reaction class** (on the right).

Reaction Descriptions:

- a) In this reaction, a water molecule breaks a bond to form a carboxylic acid and an alcohol.
- **HINT: Dehydration of Alcohols**b) An **H** and an **OH** are removed from the reactant to produce an alkene and H_2O .
- c) A hydrogen atom is added to each of the double bonded carbon atoms in the reactant to produce an alkane.
- d) A hydrogen atom from H_2O is added to one of the double bonded carbon atoms and the OH from the H_2O is added to the other double bonded carbon atom in the reactant to produce the corresponding alcohol.

Organic Reaction Class Choices:

Hydrogenation: Reduction of Alkenes

Hydrolysis of Esters

Hydration of Alkenes

Dehydration of Alcohols

For more help: Review [chapter 6 part 10](https://vimeo.com/255474173) [video](https://vimeo.com/255474173) and [chapter 6 part 11 video](https://vimeo.com/255474173) or chapter 6 section 8 in the textbook.

[Go to next question](#page-90-1)

6.28) You learned about *four classes of organic reactions* in this chapter. Match each **reaction description** (on the left) with an the appropriate **organic reaction class** (on the right).

Reaction Descriptions:

- a) In this reaction, a water molecule breaks a bond to form a carboxylic acid and an alcohol. **Hydrolysis of Esters**
- b) An **H** and an **OH** are removed from the reactant to produce an alkene and H_2O . **Dehydration of Alcohols**
- c) A hydrogen atom is added to each of the double bonded carbon atoms in the reactant to produce an alkane. **Hydrogenation: Reduction of Alkenes**
- d) A hydrogen atom from **H2O** is added to one of the double bonded carbon atoms and the OH from the H_2O is added to the other double bonded carbon atom in the reactant to produce the corresponding alcohol.

Hydration of Alkenes

[Go back](#page-88-1) [Go to next question](#page-90-1) or chapter 6 section 8 in the textbook. **For more details**: Review [chapter 6 part 10 video](https://vimeo.com/255474173) and [chapter 6 part 11 video](https://vimeo.com/255474208)

Organic Reaction Class Choices: Hydrogenation: Reduction of Alkenes Hydrolysis of Esters Hydration of Alkenes

Dehydration of Alcohols

6.29) Draw **and** name the product for the *hydrogenation of* **3-hexene**.

6.29) Draw **and** name the product for the *hydrogenation of* **3-hexene**.

HINT: Knowing the "general form" of an organic reaction allows you to predict and draw the product(s) when given specific reactant(s). The general form for the hydration of alkenes is shown below.

Chemical reactions where new bonds are formed to atoms at each end of a double bond occur so frequently that organic chemist have a special name for it: "addition across a double bond." Products for reactions where *addition across a double bond* occurs can be easily predicted by "flipping" bonds, as illustrated below for the *hydrogenation of ethene*.

6.29) Draw **and** name the product for the *hydrogenation of* **3-hexene**. The product is **hexane**: **CH3CH2CH2CH2CH2CH3 EXPLANATION:** Knowing the "general form" of an organic reaction allows you to predict and draw the product(s) when given specific reactant(s). The general form for the hydration of alkenes is shown below.

Chemical reactions where new bonds are formed to atoms at each end of a double bond occur so frequently that organic chemist have a special name for it: "addition across a double bond." Products for reactions where *addition across a double bond* occurs can be easily predicted by "flipping" bonds, as illustrated below for the *hydrogenation of* **3-hexene** in this problem.

The product is hexane:

6.30) Draw **and** name the product for the *hydrogenation of* **3,4***-dimethyl-3-heptene*.

6.30) Draw **and** name the product for the *hydrogenation of* **3,4***-dimethyl-3-heptene*.

HINT:

The structure of **3,4***-dimethyl-3-heptene* is:

 $\text{CH}_3\text{CH}_2\text{C}$ \equiv C $\text{CH}_2\text{CH}_2\text{CH}_3$ $CH₃$ $CH₃$

Knowing the "general form" of an organic reaction allows you to predict and draw the product(s) when given specific reactant(s). The general form for the hydration of alkenes is shown below.

Products for reactions where *addition across a double bond* occurs can be predicted by using the "general form" of the reaction, or by "flipping" bonds, as illustrated in the hint and solution of the previous problem.

For more help: Review chapter 6 part 10 or chapter 6 section 8 in the textbook.

6.30) Draw **and** name the product for the *hydrogenation of* **3,4***-dimethyl-3-heptene*. The product is 3,4-dimethylheptane.**EXPLANATION:** Knowing the "general form" of an organic reaction allows you to predict and draw the product(s) when given specific reactant(s). The general form for the hydration of alkenes is shown below.

Alkene

Alkane

Chemical reactions where new bonds are formed to atoms at each end of a double bond occur so frequently that organic chemist have a special name for it: "addition across a double bond." Products for reactions where *addition across a double bond* occurs can be easily predicted by "flipping" bonds, as illustrated below for the *hydrogenation of* **3,4***-dimethyl-3-heptene* in this problem. The product is 3,4-dimethylheptane:

6.31) An ester named *pentyl ethanoate* is used as an additive flavor ingredient in the food and beverage industry because it has a pleasant aroma similar to apples and pears. Draw the structural formula of both products in the hydrolysis of *pentyl ethanoate.* \overline{O} \mathbf{H}

CH₃C – O – CH₂CH₂CH₂CH₂CH₃ + H₂O
$$
\longrightarrow
$$
 ? +
pentyl ethanoate

6.31) An ester named *pentyl ethanoate* is used as an additive flavor ingredient in the food and beverage industry because it has a pleasant aroma similar to apples and pears. Draw the structural formula of both products in the hydrolysis of *pentyl ethanoate.* **? ?** $CH_3C - O - CH_2CH_2CH_2CH_2CH_3 + H_2O$ $+$ *pentyl ethanoate*

HINT: In the hydrolysis of an ester, a water molecule breaks a bond in the **ester** to form a **carboxylic acid** and an **alcohol**.

Method for predicting the products for hydrolysis of esters:

- **Step 1:** Draw the structural formula of the ester and identify the hydrocarbon parts.
- **Step 2:** Break (lyse) the carbon-oxygen *single bond* between the *carbonyl* carbon and the oxygen. The *carbonyl* carbon is the carbon that is double bonded to an oxygen.
- **Step 3:** Add the **–OH** from the water to the *carbonyl* carbon and then add the **H** from the water to the oxygen on the *other fragment*.

For more help: Review [chapter 6 part 10](https://vimeo.com/255474173) or chapter 6 section 8 in the textbook.

6.31) An ester named *pentyl ethanoate* is used as an additive flavor ingredient in the food and beverage industry because it has a pleasant aroma similar to apples and pears. Draw the structural formula of both products in the hydrolysis of *pentyl ethanoate.*

CH₃C – O – CH₂CH₂CH₂CH₂CH₃ + H₂O
\n
$$
\longrightarrow \begin{array}{ccc}\n & \downarrow & \\
 & \
$$

EXPLANATION: In the hydrolysis of an ester, a water molecule breaks a bond in the **ester** to form a **carboxylic acid** and an **alcohol**.

Method for predicting the products for hydrolysis of esters:

- **Step 1:** Draw the structural formula of the ester and identify the hydrocarbon parts.
- **Step 2:** Break (lyse) the carbon-oxygen *single bond* between the *carbonyl* carbon and the oxygen. The *carbonyl* carbon is the carbon that is double bonded to an oxygen.
- **Step 3:** Add the **–OH** from the water to the *carbonyl* carbon and then add the **H** from the water to the oxygen on the *other fragment*.

For more details: Review [chapter 6 part 10 video](https://vimeo.com/255474173) or chapter 6 section 8 in the textbook.

6.32) Draw the product formed by the **hydration** of this alkene:

$$
\begin{array}{c}\n\text{CH}_3\text{CH}_2\text{---} \text{C} \longrightarrow \text{CH}_2\text{CH}_3 \\
\downarrow \qquad \qquad \downarrow \\
\text{H} \qquad \text{H} \qquad \text{H}\n\end{array}
$$

HINT: Alkenes react with water molecules to produce alcohols. A hydrogen atom from H_2O is added to one of the double bonded carbon atoms, and the -OH from the H_2O is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol. The double bond in the alkene is converted to a single bond in the alcohol. The general form for the hydration of an alkene reaction is shown below:

Alkene

Alcohol

In the hydration of alkenes reaction, water is added *across the double bond* of an alkene, therefore we can use the bond flipping method to predict the structure of the alcohol that is produced. This is shown below for the hydration of *ethene*.

6.32) Draw the product formed by the **hydration** of this alkene:

$$
\begin{array}{c}\n\text{CH}_3\text{CH}_2\text{---} \text{C} \text{---}\text{CH}_2\text{CH}_3 \\
\mid \quad \mid \\
\text{H} \quad \quad \text{H}\n\end{array}
$$

EXPLANATION: Alkenes react with water molecules to produce alcohols. A hydrogen atom from H_2O is added to one of the double bonded carbon atoms, and the -OH from the H_2O is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol. The double bond in the alkene is converted to a single bond in the alcohol. The general form for the hydration of an alkene reaction is shown below:

Alkene

Alcohol

In the hydration of alkenes reaction, water is added *across the double bond* of an alkene, therefore we can use the bond flipping method to predict the structure of the alcohol that is produced. This is shown below for the hydration of the alkene in this problem.

6.33) Draw the product formed by the hydration of this alkene:

6.33) Draw the product formed by the **hydration** of this alkene:

 $CH_3 \rightarrow \text{C} \rightarrow \text{CH}_3$ $CH₃$ $CH₃$

HINT: Alkenes react with water molecules to produce alcohols. A hydrogen atom from H₂O is added to one of the double bonded carbon atoms, and the -OH from the H_2O is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol. The double bond in the alkene is converted to a single bond in the alcohol. The general form for the hydration of an alkene reaction is shown below:

Alkene

Alcohol

In the hydration of alkenes reaction, water is added *across the double bond* of an alkene, therefore we can use the bond flipping method to predict the structure of the alcohol that is produced. This is shown below for the hydration of *ethene*.

6.33) Draw the product formed by the **hydration** of this alkene:

 CH_3-C \equiv $C-CH_3$ CH_3 CH_3

EXPLANATION: Alkenes react with water molecules to produce alcohols. A hydrogen atom from H₂O is added to one of the double bonded carbon atoms, and the -OH from the H_2O is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol. The double bond in the alkene is converted to a single bond in the alcohol. The general form for the hydration of an alkene reaction is shown below:

Alkene

Alcohol

In the hydration of alkenes reaction, water is added *across the double bond* of an alkene, therefore we can use the bond flipping method to predict the structure of the alcohol that is produced. This is shown below for the hydration of the alkene in this problem.

6.34) Draw **and** name the *condensed structural formula* for the alkene that is produced when *butyl alcohol* undergoes a dehydration reaction.

6.34) Draw **and** name the *condensed structural formula* for the alkene that is produced when *butyl alcohol* undergoes a dehydration reaction.

HINT: Dehydration of alcohols is the reverse of hydration of alkenes. **H₂O** is removed from an alcohol to form an alkene. A hydroxyl group (**-OH**) is removed from a carbon atom and a **H** is removed from a carbon that is adjacent to the carbon that was bonded to the hydroxyl group. A double bond forms between these two carbons.

The general form for the dehydration of an alcohol reaction is shown on the right:

If you wish, you can use a "bond flipping" method to solve this problem. Since this reaction is the *reverse* of the hydration of alkenes reaction, you can flip the bonds in the *opposite order* to that which we used when we added water across the alkene double bond. Doing so can be very helpful in determining the alkene product of dehydration of alcohol reactions.

[Go back](#page-105-1) For more help: Review [chapter 6 part 11 video](https://vimeo.com/255474208) or chapter 6 section 8 in the textbook.

[Click here to](#page-107-1) **check [your answer](#page-107-1)**

6.34) Draw **and** name the *condensed structural formula* for the alkene that is produced when *butyl alcohol* undergoes a dehydration reaction.

The general form for the dehydration of

an alcohol reaction is shown on the right:

EXPLANATION: Dehydration of alcohols is the reverse of hydration of alkenes. **H₂O** is removed from an alcohol to form an alkene. A hydroxyl group (**-OH**) is removed from a carbon atom and a **H** is removed from a carbon that is adjacent to the carbon that was bonded to the hydroxyl group. A double bond forms between these two carbons.

Alkene

Since this reaction is the *reverse* of the hydration of alkenes reaction, we can flip the bonds in the *opposite order* to that which we used when we added water across the alkene double bond.

6.35) Biochemical literature often uses an *alternative* chemical equation format. For example, the reaction:

> $A + B \rightarrow C + D$ is often written as:

> > **A B C D**

There are *eight* chemical reactions that occur in the **citric acid cycle** process. The reactions of the citric acid cycle are shown in the figure on the right.

Which reaction is a *hydration reaction*?

6.35) Biochemical literature often uses an *alternative* chemical equation format. For example, the reaction:

> $A + B \rightarrow C + D$ is often written as:

> > **A B C D**

There are *eight* chemical reactions that occur in the **citric acid cycle** process. The reactions of the citric acid cycle are shown in the figure on the right.

Which reaction is a *hydration reaction*?

HINT:

In hydration reactions, a hydrogen atom from H_2O is added to one of the double bonded carbon atoms in the reactant molecule, and the -OH from the H_2O is added to the other double bonded carbon atom. The double bond is converted to a single bond in the product. Find the reaction where this occurs.

6.35) Biochemical literature often uses an *alternative* chemical equation format. For example, the reaction:

> $A + B \rightarrow C + D$ is often written as:

> > **A B C D**

There are *eight* chemical reactions that occur in the **citric acid cycle** process. The reactions of the citric acid cycle are shown in the figure on the right.

Which reaction is a *hydration reaction*?

[Go back](#page-109-1)

ANSWER: Reaction 7

EXPLANATION:

In **Reaction 7,** H_2O is added "across the double bonded carbon atoms" in *fumarate*. The carbon-carbon double bond in *fumarate* is converted to a single bond in malate.

6.36) NOTE: You may find this question to be difficult. I would not ask this question on an exam because it may be difficult for students to determine the *family of organic compounds* in which the large reactant molecule belongs.

Dietary **triglycerides**, regardless of whether they came from plant or animal sources, are often referred to as **fat**. When triglycerides are catabolized, their chemical potential energy is converted to chemical potential energy in ATP. This process begins with the *digestion* of triglycerides. In digestion, triglycerides are first converted to diglycerides, and then to monoglycerides, as shown below.

You learned about *four classes of organic reactions* in this chapter. To which of these *four classes of organic reactions* (listed below) does this reaction belong?

[Click here for a](#page-112-1) **hint** $\left| \begin{array}{c} \end{array} \right|$ [Click here to](#page-113-1) **check**

[your answer](#page-113-1)

This is the last problem.

- a) Hydrogenation: Reduction of Alkenes
- b) Hydrolysis of Esters
- Hydration of Alkenes

[Go back](#page-110-1)

d) Dehydration of Alcohols

6.36) NOTE: You may find this question to be difficult. I would not ask this question on an exam because it may be difficult for students to determine the *family of organic compounds* in which the large reactant molecule belongs.

Dietary **triglycerides**, regardless of whether they came from plant or animal sources, are often referred to as **fat**. When triglycerides are catabolized, their chemical potential energy is converted to chemical potential energy in ATP. This process begins with the *digestion* of triglycerides. In digestion, triglycerides are first converted to diglycerides, and then to monoglycerides, as shown below.

a *tri*glyceride

[Go back](#page-111-1)

a *di*glyceride

a *mono*glyceride

You learned about *four classes of organic reactions* in this chapter. To which of these *four classes of organic reactions* (listed below) does this reaction belong?

- a) Hydrogenation: Reduction of Alkenes
- b) Hydrolysis of Esters
- c) Hydration of Alkenes
- d) Dehydration of Alcohols

HINT: The key to this problem is to *recognize the family of organic compounds* in which the large reactant molecule belongs. I have highlighted the *important bonding pattern* in yellow. Also, note that the diglyceride and monoglyceride, contain OH groups that are characteristic of *a particular organic family* (see blue arrows).

This is the last problem.

6.36) NOTE: You may find this question to be difficult. I would not ask this question on an exam because it may be difficult for students to determine the *family of organic compounds* in which the large reactant molecule belongs.

Dietary **triglycerides**, regardless of whether they came from plant or animal sources, are often referred to as **fat**. When triglycerides are catabolized, their chemical potential energy is converted to chemical potential energy in ATP. This process begins with the *digestion* of triglycerides. In digestion, triglycerides are first converted to diglycerides, and then to

a *tri*glyceride

[Go back](#page-112-1)

a *di*glyceride

a *mono*glyceride

You learned about *four classes of organic reactions* in this chapter. To which of these *four classes of organic reactions*

(listed below) does this reaction belong?

- a) Hydrogenation: Reduction of Alkenes
- b) Hydrolysis of Esters
- c) Hydration of Alkenes
- d) Dehydration of Alcohols

EXPLANATION: The key to this problem is to *recognize the large reactant molecules* as *esters* and note the *carboxylic acid products*. I have highlighted the *ester bonding pattern* in yellow. Note that the diglyceride and monoglyceride, contain OH groups that are characteristic of *the alcohol organic family* (see blue arrows).

This is the last chapter 6 review problem. © 2019 Jim Zoval